

Esempio di studio viscosimetrico per la qualificazione comparativa di burri destinati alla trasformazione.

Prof. Fernando Tateo, Prof. Monica Bononi (Di.S.A.A. – UniMi)

Coll. Chiara Picchi (UniMi), Alice Valloncini (UniMi), Giovanni Brazzale (BSC – Brazzale SC)

Da quanto esposto nell'articolo "Note brevi sulla caratterizzazione reologica del burro" pubblicato nella sezione "Advanced research" (https://www.brazzalesc.com/note-brevi-sulla-caratterizzazione-reologica-del-burro/) si ribadisce il concetto dell'influenza che il contenuto in trigliceridi e la composizione dei trigliceridi del burro ha sul valore di viscosità. In particolare sono i trigliceridi C50, C52 e C 54 da una parte ed i trigliceridi C34 e C36 dall'altra a influenzare i valori di viscosità, potendosi attribuire ai primi la maggiore influenza sulla riduzione della viscosità ed ai secondi un'influenza sull'incremento del suo valore.

In realtà, a rendere complesso lo studio della correlazione fra composizione chimica di un burro e viscosità dello stesso interviene l'influenza dei componenti minori, che può esser tale da influire in senso opposto a quanto prevedibile dalla composizione trigliceridica.

Tale considerazione impone di non considerare qualificante il valore del punto di fusione o più precisamente l'intervallo di fusione ai fini della previsione delle capacità strutturanti del burro.

A dimostrazione di quanto affermato si propone nel presente testo la considerazione dei risultati di un'analisi chimico-fisica condotta su due burri, l'uno definito "F.lli Brazzale superiore", prodotto da latte di territorio Moravo e derivato da tecnologia utile a conferire caratteri di particolare attività strutturante, l'altro definito "centrifuga" derivante da tecnologia identica alla precedente, ma ottenuto da latte di origine esclusivamente nazionale.

Opportuno è considerare i fondamentali caratteri chimici dei due burri:

Tabella 1: Indici di confronto tra Burro Superiore e Burro Centrifuga

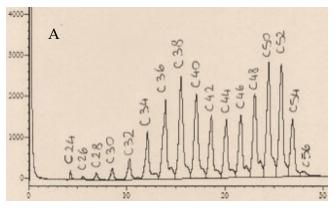
Burri	IF °C	ΔIF	U %	MG %	I.S. °C
	(Intervallo di		(Umidità)	(Materia	(Incipiente
	Fusione)			Grassa)	Solidificazione)
Superiore	33,2-35,4	2,9	11,8	86,6	33,2
Centrifuga	32,5-35,5	3,0	12,0	86,6	30,7

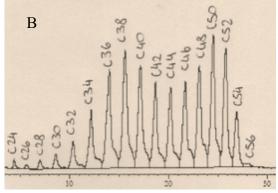
Dall'esame della tabella 1 si evince che, pur essendovi una sostanziale equivalenza fra i dati grezzi di materia grassa, umidità e punto di fusione, risultano differenziati i valori di "viscosità" proprio in senso contrario a quanto i valori di C52,C54, e C34,C36 lascerebbero prevedere.

Sono dunque i valori di viscosità e non quelli dell'intervallo di fusione a caratterizzare il comportamento reologico di un burro ed a identificarlo come atto o meno a impieghi speciali.

Nella Tabella 2 sono riscontrabili i dati riferibili ai tracciati GC/OCI dei trigliceridi corrispondenti

Tabella 2- Confronto della composizione trigliceridica di Burro Superiore e Burro Centrifuga


ai due diversi burri in questione e riportati in Fig.1 (A) e (B).


Burri	Superiore F.lli Brazzale	Centrifuga
C24	0,37	0,42
C26	0,22	0,27
C28	0,52	0,60
C30	0,94	1,11
C32	2,01	2,34
C34	4,96	5,39
C36	9,40	9,77
C38	11,57	11,72
C40	9,61	9,81
C42	6,81	7,57
C44	6,57	7,22
C46	7,53	7,93
C48	9,76	9,58
C50	12,42	11,50
C52	11,38	9,90
C54	5,50	4,50
C56	0,48	0,41

I tracciati GC/OCI dei trigliceridi dei due burri a confronto e relativi ai dati della Tabella 2 sono qui di seguito riportati:

Figura 1 - Tracciato trigliceridi (A) *Burro Superiore* L 4254 C e (B) *Burro Centrifuga* (camp. 24.01.22)

I dati di I.S.°C (Incipiente Solidificazione) riportati in Tabella 1 derivano dall'elaborazione dei tracciati da viscosimetria (Figure 2 e 3 nelle pagine successive alle conclusioni) e sono stati prodotti secondo quanto descritto nella nota "Determinazione della viscosità nel burro come parametro di qualificazione per una ottimale destinazione d'uso" (https://www.brazzalesc.com/determinazione-della-viscosita-del-burro-come-parametro-di-qualificazione-per-una-ottimale-destinazione-duso/).

I valori di I.S. derivano dalle misure di viscosità eseguite in continuo durante la fase di raffreddamento da 50°C a 20°C, controllata da un termostato Peltier, del burro "superiore" che raggiunge lo stato di incipiente solidificazione a 33,2°C. Il burro "centrifuga" invece raggiunge lo stato di incipiente solidificazione a 30,7°C. Ciò evidenzia che a parità di condizioni di raffreddamento delle due diverse masse, il burro "superiore" raggiunge la condizione di incipiente stato solido ad una temperatura superiore a quella necessaria per il burro "centrifuga", in virtù della maggiore sua viscosità (i due burri necessitano infatti di temperature differenti per conservare lo stato liquido).

La Tabella 3 che segue riporta l'andamento dei valori di "viscosità dinamica" in corrispondenza della temperatura nel corso della fase di raffreddamento del burro "F.lli Brazzale superiore".

La Tabella 4 contiene invece i valori di "viscosità dinamica" in corrispondenza della temperatura nel corso della fase di raffreddamento del burro "centrifuga".

Dall'esame delle due Tabelle 3 e 4 (nelle pagine successive alla conclusioni) si desumono i dati di viscosità dei due burri a confronto in corrispondenza dei valori della temperatura di incipiente solidificazione: trattasi di 43,34 cPs per il burro "superiore" alla temperatura di I.S. 33,2°C, e di 48,72 cPs alla temperatura di 30,7°C.

Per il burro "centrifuga" la viscosità è pari a 42,2 cPs alla temperatura di I.S. 33,2°C, ed è pari a 46,32 cPs alla temperatura di 30,7°C.

Conclusioni

L'andamento della viscosità in funzione della temperatura in decrescita è quindi naturalmente crescente per ogni tipologia di burro.

L'andamento crescente dei valori di cPs non è invece analogo per ogni tipologia di burro.

Ad esempio al valore limite superiore pari a 50°C il burro "superiore" ha un valore di viscosità di 27,68 cPs mentre per il "centrifuga" il valore è di 25,05cPs.

Invece al valore limite inferiore pari a 24,1°C il burro "superiore" ha un valore di viscosità di 99,61 cPs mentre per il "centrifuga" il valore è di 109,6 cPs.

In definitiva, fino alla temperatura di 27,6°C, il burro "superiore" presenta valori di viscosità più alti rispetto al burro "centrifuga", mentre a temperatura inferiore a 27,6°C il burro "superiore" presenta valori più bassi rispetto al "centrifuga". A partire da ca 27°C e fino a solidificazione il tasso di crescita della viscosità del burro "superiore" è inferiore a quello del burro "centrifuga".

Le considerazioni di cui sopra consentono di ottimizzare le condizioni tecnologiche ideali per l'impiego del burro "superiore" nelle formulazioni.

BSC - Brazzale Science Center - Zanè (VI)

Tabella 3. Andamento dei valori di viscosità dinamica in funzione della variazione di temperatura durante la fase di raffreddamento/solidificazione di *Burro Superiore* (L 5039 C)

Δ	η (cP) (Viscosità	T (°C)	Δ	η (cP) (Viscosità	T (°C)
	Dinamica)	(Temperatura)		Dinamica)	(Temperatura)
-0,23	27,68	50	0,8	38,43	36,3
-0,23	27,45	49,5	0,68	39,23	35,8
0,23	27,22	49	1,03	39,91	35,3
-0,12	27,45	48,5	0,8	40,94	34,7
0,23	27,33	48	0,8	41,74	34,2
0,23	27,56	47,5	0,8	42,54	33,7
0,34	27,79	46,9	0,92	43,34	33,2
0,46	28,13	46,4	1,03	44,26	32,7
0,34	28,59	45,9	0,91	45,29	32,2
0,23	28,93	45,4	1,37	46,2	31,7
0,35	29,16	44,9	1,15	47,57	31,2
0,45	29,51	44,4	0,91	48,72	30,7
0,57	29,96	43,9	1,03	49,63	30,2
0,35	30,53	43,4	1,15	50,66	29,7
0,46	30,88	42,9	1,14	51,81	29,2
0,57	31,34	42,4	0,91	52,95	28,6
0,57	31,91	41,9	0,92	53,86	28,1
0,57	32,48	41,4	1,37	54,78	27,6
0,57	33,05	40,8	1,37	56,15	27,1
0,46	33,62	40,3	1,72	57,52	26,6
0,46	34,08	39,8	2,4	59,24	26,1
0,57	34,54	39,3	3,2	61,64	25,6
0,8	35,11	38,8	4,35	64,84	25,1
0,57	35,91	38,3	6,4	69,19	24,6
0,57	36,48	37,8	9,72	75,59	24,1
0,8	37,05	37,3	14,3	85,31	23,6
0,58	37,85	36,8		99,61	23

Tabella 4. Andamento dei valori di viscosità dinamica in funzione della variazione di temperatura durante la fase di raffreddamento/solidificazione di Burro Centrifuga (camp. 24.01.22)

Δ	η (cP)	T (°C)	Δ	η (cP)	T (°C)
	(Viscosità	(Temperatura		(Viscosità	(Temperatura)
	Dinamica))		Dinamica)	
-0,23	25,05	50	0,8	36,94	36,8
0,34	24,82	49,5	0,69	37,74	36,3
0,8	25,16	49	0,45	38,43	35,8
-0,11	25,96	48,5	0,92	38,88	35,3
0,34	25,85	48	0,57	39,8	34,7
0,34	26,19	47,5	1,03	40,37	34,2
0,69	26,53	46,9	0,8	41,4	33,7
0,11	27,22	46,4	0,69	42,2	33,2
0,46	27,33	45,9	0,8	42,89	32,7
0,34	27,79	45,4	1,03	43,69	32,2
0,46	28,13	44,9	0,91	44,72	31,7
0,46	28,59	44,4	0,69	45,63	31,2
0,34	29,05	43,9	0,91	46,32	30,7
0,57	29,39	43,4	1,03	47,23	30,2
0,57	29,96	42,9	1,14	48,26	29,7
0,58	30,53	42,4	1,26	49,4	29,2
0,45	31,11	41,9	1,49	50,66	28,6
0,58	31,56	41,4	1,83	52,15	28,1
0,68	32,14	40,8	2,51	53,98	27,6
0,34	32,82	40,3	3,89	56,49	27,1
0,58	33,16	39,8	5,84	60,38	26,6
0,57	33,74	39,3	7,09	66,22	26,1
0,68	34,31	38,8	8,46	73,31	25,6
0,58	34,99	38,3	11,66	81,77	25,1
0,68	35,57	37,8	16,17	93,43	24,6
0,69	36,25	37,3		109,6	24,1

Figura 2. Tracciati da viscoQC 300-L per la misura della viscosità dinamica in funzione della temperatura in fase di raffreddamento/solidificazione di *Burro Superiore* (L 5039 C)

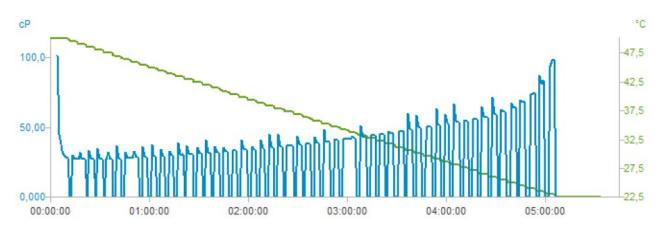
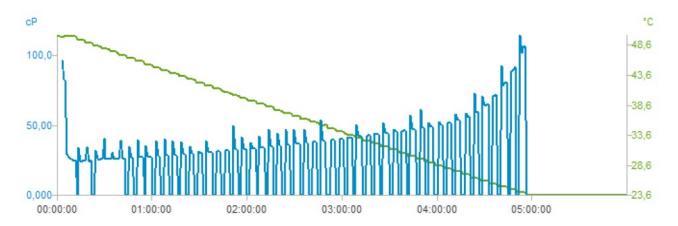



Figura 3. Tracciati da viscoQC 300-L per la misura della viscosità dinamica in funzione della temperatura in fase di raffreddamento/solidificazione di *Burro Centrifuga* (camp. 24.01.22)

